
JOURNAL OF COMPUTA-IIONAL PHYSIC3 5, 587-611 (1970) 

Numerical Methods of Some Transsonic Aerodynamics Problems 

0. M. BEL~TSBRKOVSKII 

Computing Center of the Academy of Sciences of the USSR, Moscow, USSR 

Received January 9, 1970 

In this paper a short review of the numerical methods used for the determination of 
the aerodynamic charac@ktic~ of high-speed vehicles with transsotic and supersonic 

velocities will be given. Genendly we will be concerned with steady problems of external 
aerodynamics for blunt bodies. 

I. INTRoDU~~~N 

1. In recent years much attention has been paid to the study of transsonic 
problems of gas dynamics including vorticity. Such problems arise, for instance, 
in the flow past bodies with a detached shock wave, in the flow past a discontinuity 
point of the body surface, on wings in super-critical flow, in nozzles, and so on. 
Aerodynamic and stability characteristics in these regimes have not been studied 
diciently . 

In transsonic regions complex mixed gas flows take place, and so-called “floating” 
shocks and local supersonic zones may develop. The difficulties of such problems 
are related to the complicated mathematics (boundary layer problems for non- 
linear elliptic-hyperbolic equations of motion of a compressible rotational gas). 
It should be noted that most analytical investigations are devoted to the study of 
plane potential transsonic flows, therefore new approaches had to( be developed 
to deal with rotational and mixed flows in three dimensions. 

Only numerical methods using high speed computers and careful experiments 
allow us to get the complete solution to the above problems and to determine the 
necessary flow characteristics. Thus, the elaboration of numerical schemes, the 
calculation of different transsonic gas dynamics problems, as well as the study of 
analytical properties of the solutions and their asymptotic behavior are of significant 
interest at present. 

2. The numerical schemes were developed under our supervision and 
collaboration in the Moscow Physical Technical Institute and the Computing 
Center of the Academy of Sciences of the USSR. The work was done by young 
scientists, post-graduates or undergraduates. 
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The review given is not claimed to be a complete account of the field. We shall 
simply draw the reader’s attention to some peculiarities of the numerical schemes 
and the methods of solving steady gas dynamics problems presently being used. 
We shall mention the new results obtained recently and discuss the problems of 
the development and use of the numerical algorithms for carrying out serial 
calculations in solving modern engineering problems arising in practice. 

II. NCJMERICAL METHOD SURVEY 

1. Steady-State Schemes 

In determining the steady aerodynamic characteristics of bodies (especially 
when electronic computers of average power were employed) we made wide use 
of the following methods for solving steady gas dynamics equations, the method 
of integral relations (m.i.r.), the method of characteristics (m.ch.) and some 
finite difference schemes (e.g., schemes with “artificial viscosity”, and others). 
We wish to consider especially problems in which different discontinuities and 
singularities are given beforehand, together with some associated boundary 
conditions; the solutions being carried out in regions where functions vary 
continuously. 

As is known, three different schemes of the method of integral relations were 
developed for the determination of flow in the region of a blunt nose, namely, 
using an approximation for the initial functions across the shock layer (Scheme I), 
along it (Scheme II) or in both directions (Scheme III). As a result the boundary 
value problem was solved for an approximate system of ordinary differential 
(algebraic) equations. To solve the three dimensional problems, some additional 
trigonometric approximation in the circumferential coordinate was introduced 
[l, 21. For different flow conditions and different body shapes one of the schemes 
of the method of integral relations has been found applicable; they are widely used 
in our country as well as abroad. 

The main advantage of these schemes is that, by means of different transforma- 
tions, one succeeds eventually in approximating functions (or groups of functions) 
with comparatively weak variations, It allows us to obtain reliable results and a 
high degree of accuracy with a comparatively small number of interpolation nodes 
(usually 34 calculated points were used). 

The choice of the independent variables, the form of the initial system of 
equations of motion (that is, the introduction of the integrals into the initial system, 
the use of the divergent form of the laws of conservation and others), the use of 
conservation schemes, the approximation of the integrals, etc., are all of great 
importance in writing the numerical algorithm using m-ix., and hence in producing 
results. 
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The main difficulty in carrying out the schemes of m.i.r. is the solution of many 
parameter boundary problems for the approximating system of equations. This 
was overcome by means of diierent iteration schemes. Moreover, these schemes 
were used in transsonic regions mainly for bodies of a comparatively simple 
form, while when dealing with a supersonic zone one had to adopt another 
algorithm. 

In calculating supersonic flow the two- and three-dimensional schemes of the 
method of characteristics by P. I. Chushkin, K. M. Magomedov, and their 
coworkers were used [3, 41. As is known, having written down the initial form 
of the system in characteristic variables, one requires approximation of ordinary 
derivatives only. Using a llxed linear computational network, we get a system of 
finite difference equations with its several advantages. 

With the help of the above mentioned approaches, a large number of gas 
dynamics problems have been solved, namely, ideal gas flows with chemical 
reactions and radiation, transsonic and three-dimensional flows, as well as viscous 
flows. In most cases sufficiently steady and reliable results were obtained, which 
were in perfect agreement with experiment. However, these approaches to the 
solution of the steady-state equation may be successfully used only for problems 
in which there are no singularities, d&continuities, intersections, and interactions. 
The application of these approaches is difficult for bodies of complex form with 
a large number of discontinuities. besides, a single algorithm for the calculation 
of different types of flow is preferable. 

2. Unsteady-State Schemes 

The next step in the evolution of numerical methods, which was motivated by 
urgent practical needs and aided by the availability of electronic computers, 
was the development of nonsteady schemes and the use of the stability method 
for the solution of steady-state aerodynamic problems. We tried to keep to the 
general principles and ideas of the m.i.r. and m.ch. in approximating the nonsteady 
equations with respect to space variables. The divergent or characteristic form 
of the initial equations were used, the same calculations networks were 
employed, etc. 

In this way the nonsteady Schemes II and III of the method of integral relations 
and the network-characteristic method were developed [S]. These allow us to 
consider rather complicated types of flow with a single algorithm. It is natural 
that the problems of stability- and the attainment of steady-state solutions should 
become crucial. They require some specific technique such as the introduction of 
artificial viscosity into the initial system, and of dissipation terms into the difference 
equations. In a number of cases the accuracy of the results obtained is less than 
in the steady-state methods, but these approaches enabled us to consider new 
classes of problems; for example, the determination of the aerodynamic character- 
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istics of three-dimensional flow for specific configurations, the calculations of 
viscous transsonic flows, and others. 

3. “Large Particles” Method 

Finally, in the third stage of development it seemed reasonable and advantageous 
to introduce the elements of the Harlow “particle-in-cell” method [6] into the 
algorithms. At first only the equation of continuity is represented as the mass flow 
across the Euler cell, using the simplest finite difference or integral approximation 
along the coordinates. 

Thus the modified method of “large particles” [7, 81 came into existence, which 
(again by means of the stability process) allowed us to consider from one point 
of view such a complicated task as, for example, the subsonic, transsonic, and 
supersonic flow past a flat nosed body in two dimensions or with axial symmetry. 
Such an approach is used in calculating viscous flows, and it may permit us to 
study the characteristics of separated flows. 

Thus, this review is concerned with the development of a definite class of 
numerical schemes used for the estimation of the aerodynamic characteristics of 
vehicles. It should be stressed that the development of the numerical schemes 
mentioned above is determined by the improvement and extension of the ways 
of solving the boundary value problems for the corresponding approximating 
equations; by the consideration of a new, wider class of problems; by the develop 
ment and improvement of the electronic computers, machine languages, input and 
output arrangements, and so on. At the same time the algorithms are made 
according to principles of the method of integral relations, the method of character- 
istics, and other approaches. We shall not dwell on these methods in this paper, 
as the details are described in the articles referred to. 

III. REWLTS OF THE CALCULATIONS 

The problems of flow $ast bodies at small free-stream supersonic velocities, 
and of the singularities of the flow around bodies with sonic discontinuities 
(solved by means of m.i.r. and m.ch.) are considered in succession. The calculations 
of the flow around a cylindrical body under supersonic and transsonic conditions 
(the largei-particles method) and three-dimensional flows are also examined. 
In conclusion, some properties of flows with floating shocks are studied. 

1. Flows Around Bodies at Small Supersonic Velocities 

The investigation of properties of flows around bodies at small supersonic 
velocities is of considerable interest. With a decrease in the Mach number of the 
oncoming flow, the region of influence of the mixed flow is markedly increased. 
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While investigating this problem we should take into consideration the transsonic 
character of the flow between the sonic line and the limiting characteristic bounding 
the minimum region of influence of the blunt nose. Disturbances in the transsonic 
region will affect the form of the sonic line, and, consequently, the whole flow 
in the mixed zone. The solution of the boundary value problem becomes more 
dependent on the change of initial data, the errors due to approximations increase, 
and the calculation becomes unstable. All this requires the construction of special 
numerical schemes. It is essential to know the boundaries of various types of 
minimum regions of influence of the blunt nose. 

The most effective method in the case is Scheme III of the method of integral 
relations [l, 21 in which the representation of functions in two directions is used, 
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and the initial equations are approximated by a nonlinear system of algebraic 
equations on a curvilinear computational net (Fig. 1). By means of these schemes, 
F. D. Popov [2] succeeded in carrying out calculations up to a Mach number of 
the undisturbed flow of M, = 1.05. Besides, a complete system of equations of 
gas dynamics including vorticity was considered in this case. The calculation of 
sonic flow (M,,, = 1, potential flow), when the shock wave is detached from the 
body at an infinite distance, was performed by P. J. Chushkin, also by means of 
the method of integral relations [9]. Fig I shows some of the results obtained. 
The positions and forms of shock waves, sonic lines, streamlines, and limiting 
characteristics of the first and second families at different values of M, are given. 

As can be seen, with a decrease of Mach number the flow pattern is markedly 
changed. The sonic line departs sharply from the axis of symmetry, turning 
downstream near the sonic point, the position of this point being slightly dependent 
on A4, . The region of influence of the blunt nose is restricted to two characteristics 
of different families tangential to the sonic line (II type). With a decrease of the 
undisturbed velocity far upstream, the point of tangency is displaced towards the 
shock wave. The main changes in gasdynamic quantities are confined to the 
vicinity of the surface of the body. The large curvature of the streamline is observed 
also only in the immediate neighborhood of the body. It is noteworthy that the 
given type of minimum region of influence exists for flow around a sphere up to 
M, = 1.1. 

In the same Figure a comparison is shown between the calculation by F. D. Popov 
and experimental data by V. G. Maslennikov, A. P. Bedin, G. J. Mishin, et al. 
on the detachment distance of the shock wave along the axis of symmetry (E,,), 
as well as on the form and position of the waves. It is seen that the agreement 
between calculation and experimental data is extremely good. The tables of flow 
fields for the given flow conditions are presented in a monograph [2]. 

2. Singularities of Flow Around Bodies With A Sonic Discontinuity 

The calculation of supersonic flow around bodies with a discontinuity in the 
slope of the contour is of great practical value since the presence of a sharp corner 
on the body, for a given radius of curvature of bluntness, decreases the heat 
exchange near the stagnation point. 

In the case where we introduce a jump in slope of the contour, the flow pattern 
is changed, so that the local sonic velocity of the flow may be attained at the 
point of discontinuity (sonic discontinuity), the calculation of such flows is 
considerably complicated by the presence of a singularity. The zone of expansion 
of flow around the comer will be in a region of mixed transsonic flow accompanied 
by a sharp change of velocity, both in magnitude and direction. In addition, 
in the supersonic flow zone near the surface of the body a “floating” shock may 
occur, which considerably atIe& the whole flow pattern. It is noteworthy that the 
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results of calculation of mixed flows in the region of influence of the blunt nose 
provide further initial data for the calculations in the supersonic zone. The 
calculation for bodies with a break of contour in the transsonic zone must be 
made with a high degree of accuracy, since even small errors in the computation 
prevent us from continuing the calculation into the supersonic zone. For the 
calculation of such flows Scheme I or Scheme II of the method of integral relations 
were used [1, 21. 

In the first scheme the above method was applied both in the region ahead of 
the comer and in the supersonic expansion around it, where the initial equations 
are given in a polar system of coordinates with origin at the corner. The system of 
ordinary differential equations is integrated numerically along the shock layer 
from the axis of symmetry. In the vicinity of a comer (where the Prandtl-Meyer 
solution is valid) a differential relation is used, which is the condition of 
compatibility along a characteristic of the second family. 

In the second case, by means of the construction of limiting characteristics, 
it is possible to separate out exactly the region of influence of the blunt body, 
which clearly improves the accuracy of the computations in every approximation. 
Here, in the vicinity of the corner (region G), we use the asymptotic solution of 
Vaglio-Laurin-Shugayev in a form convenient for our calculations [2] (Fig. 2). 

FIGURE 2 
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The solution describing the plane and axisymmetric transsonic flow of a perfect 
gas in the vicinity of G has the form of a power series in n, (the distance is measured 
from the surface of the body, where n = 0) with coefficients depending on the 
corresponding self-similar variable 5. The principal term of this expansion (for 
i = 0) corresponds to plane potential flow; the terms of the expansion for i > 0 
(taking into account the axisymmetric and eddy character of the flow) are determ- 
ined from a system of linear nonhomogeneous ordinary differential equations. 
By introducing a parametric representation for the function g, V. F. Shugayev 
succeeded in constructing an analytical solution which greatly simplified the 
introduction of asymptotic solutions into the numerical algorithm. 

Outside the region G we use the algorithm in the usual form as given by Scheme II 
(the system of ordinary dilferential equations is integrated across the shock layer 
from the wave to the body). The additional conditions of matching of both 
solutions at the boundary of this region make the problem single-valued. 

On the whole, we succeed in constructing numerical algorithms allowing us 
to find the solution with a high degree of accuracy. The solution outside the zone 
of influence of the blunt body was generally constructed by the method of 
characteristics. Some results of calculations obtained by A. Bulekbayev, 
V. F. Ivanov, E. S. Sedova, and F. V. Shugayev are given [2]. 
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Figure 3 shows shock waves, sonic lines, and limiting characteristics for flow of 
a perfect gas (&’ = 1.4) around a spherical segement with a sonic discontinuity 
at the semiangle x = 30” (Mm = 4), and x = 33” and 43”30 (A4, = 10). The 
distribution of velocity components af, vi (along n, S, respectively) along the 
axis of symmetry (i = 0), of the limiting characteristics (i = 1) and of the inter- 
mediate line (i = 2) are also given. It is seen that the behavior on the limiting 
characteristic strongly depends on the semiangle of the segment. The results of the 
flow calculations by this method with secondary shocks are given in Fig. 15. 

3. Calculation of Flow Around A Cylindrical Fiat-Nose Body Under Transsonic and 
Supersonic Conditions 

Calculations of transsonic and supersonic flows around a cylindrical flat-nose 
body were carried out by means of the method of “large particles” [6-81. The 
problem was chosen to make it possible to carry out the calculations for a whole 
spectrum of flow conditions ranging from purely subsonic flow to hypersonic flow 
(including transsonic regions and transitions through sonic velocity). The calcula- 
tions were made by Iu. M. Davidov [8]. Here we did not single out the shocks in 
the flow beforehand. Such a “sweeping-through” method turned out to be 
reasonable, due to the presence of the lines of discontinuity within the disturbed 
region. 

FIOURE 4 
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In Fig. 4 the positions of the nose and internal shock waves and the sonic lines 
for various Mach numbers of the undisturbed flow 1.1 6 M, < 14.5 are given. 
For M, < 2 the secondary shocks in the flow are not shown, due to their weak 
intensity (with increasing ikf, the strengths of the internal shocks in the flow become 
greater). Shock waves are defined here as lines on which the density derivative 
with respect to one of space directions has a maximum. 

In Fig. 4b the density distribution along the axis of symmetry of the body is given. 
Dotted lines show values of the density behind the direct shock in the flow and 
at the stagnation point. Discontinuities due to shocks are seen to be “smeared” 
over several cells in space, with the smearing band of the wave being wider, the 
smaller the values of Mach numbers M, . Crosses in Fig. 4b indicate the results 
of calculations by a characteristic network method. As should be expected, the 
corner point in such flows is a sonic discontinuity. No special expansions in its 
vicinity were carried out. Drawing sonic lines is of interest because here 
the regions of influence of the blunt body of II type are bounded “above” by 
characteristics of I and II families. 

- CALCULATED RESULTS 

- -- Sh4ADOW EXPERIMENT 
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Figure 4c reveals the time history of the value of the density at the stagnation 
point of the body as it approaches the steady value. 

In Fig. 5 (M = 4.1) the result of the numerical solution (solid lines) are compared 
with the results of experiment (dotted lines and dots). In the graphs the positions 
and forms of the nose and secondary shock waves and the density distribution 
at X = 2/(2R) = const are given (along the abscissa the coordinate 

is plotted, where 7 = ~~(2) and T = TV are the equations of the body and 
shock wave, respectively. Experimental points are also plotted in Fig. 4a. The 
results are in fairly good agreement, especially in the flow field and on the shock 
wave. 

In Fig. 6 are plotted the lines A4 = const for the disturbed flow under transsonic 
conditions 0.6 < A4, < 1.2 (the value of the critical Mach number is M,, = 0.7). 

To eliminate, if possible, the influence of the boundary conditions on the 
flow pattern, the calculation for “overcritical” velocities were carried out with 
different values of the ratio of the length I of the cylindrical flat-nosed body to its 
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radius R. In Fig. 7 results of such calculation for M, = 0.9 are shown. The field 
ahead of the body was determined rather quickly, and for the cases in question it 
practically remained unchanged at distances up to 1.5R. The flow to the right of 
the cut is stabilized for I/R - 2. Boundary conditions at the left limit become 
important as the end is moved out farther. It is desirable in the future to use a 
finer calculation network. 

FIWJRE 7 

4. Three-Dimensional Flows 

In this section we give a scheme for constructing a characteristic network 
method developed by K. M. Magomedov and A. S. Kholodov [5]. Consider the 
system of quasilinear partial differential equations of hyperbolic type of the first 
order in the general form 

where the matrices A and B, the column vector on the right-hand sides, 3, and 
the vector function, v, may be functions of t, X, y,..., the unknown variables with 
IV components. We shall further restrict consideration to the &me-dimensional 
case, as the extension of the method to a greater number of variables is formal. 
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Suppose that the matrices A and B have only real eigenvalues (there may be 
some values which are equal). Let p* and Gt (i = 1,2,..., N) he eigenvalues and 
eigenvectors, respectively, of the matrix A’, and pi and ~5~ (i = N + l,..., 2N) 
of matrix B’. Then Eq. (1) may be reduced to one of the following characteristic 
(normal) forms 

c&ii,, = f&f - &(Bij*), i = 1, 2,..., N, 

8&i = aif - (3,(Ai&), i = N + l,..., 2N. 
(2) 

Here ijtr = et + p&, (i = 1,2 ,..., N) and Gti = Ct + pi&, , (i = N + l,..., 2N), 
are derivatives along two-dimensional characteristics on the surfaces y = con& 
and x = con&, respectively, or in other words, along the lines of intersection of 
characteristic and coordinate surfaces. 

Consider now the 3N Eqs. (I) and (2). It is obvious that the number of inde- 
pendent variables among them is equal to N. We can use this fact to construct 
explicit difference schemes not requiring, for example, any approximation of 
partial derivatives with respect to x and y. If we know the solution on the layer 
1 = to = con&, we can find the solution at the point H on the layer c = t,, + T by 
writing down Eqs. (1) and (2) in difference form at t = to + (1 - V) T, 0 < v f 1. 

Go-- 6, + n@iL + BE,, - f lo + 41 - v)(Ati, + Bii, - f ,, 

= O[(l - 2v) P + $1, 

Bi(ltEI - iii) + TV@(B~~ - 3)f + ~(1 - v) t.&(BCy - f), (3) 

= O[(l - 2v) 7% + 31, T = 1, 2,..., N etc. 

Equations (3) contain 3N unknowns 6(H), &@Y), i&(H) and the same number of 
equations. We can show that by elimination of G&Y), i?,(H) from this system 
we have the difference equations approximating Eq. (1): 

Go = m, , x, Y, wo , x, Y), wn V4fO, x9 Y), v*Ato f x9 Y)] 

+ O[(l - 2v) 78 + 701. (41 

In deriving this relation finite-difference relations simply replace ordinary 
derivatives along certain lines. The conservation in the difIerence equations of 
partial derivatives with respect to x and y on the layer r = to depend, as is seen 
from Eq. (3), on the choice of v. If v = l/2 the Eqs. (4) will be correct to the 
second order of approximation with respect to t, and, generally speaking, contain 
%&h %&J. If v = 0 (the first order approximation with respect to t) these 
derivatives are dropped. 

By transforming the region in which the solution is constructed to rectangular 
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form, by introducing the fixed network 1 = no (n = 0, 1,2,...), x = mhl , y = I/z, 
(m, I = 0, 1,2,...), and denoting the values of functions at the nodes of the network 
by Cz.t and, furthermore, given the relation of the parameters with indices 0 and i 
(i = 1,2 ,..., 2N) with known values of i& on each layer t = t, = nr, we arrive 
at the ordinary difference scheme with fixed network or the method of networks 

(5) 

where cij are matrices whose elements for the schemes of first order depend only on 
the parameters for t = t, and in the second order schemes for quasilinear equations 
also on i!;t;‘. 

Unlike the existing formulations of the method of characteristics, the approach 
given above is related formally neither with the dimensions of the space considered 
nor with the concrete form of the equations and makes use of a convenient fixed 
network. Further, by suitable choice of v and order of interpolation in the same 
computer program, we can obtain schemes of different order of approximation. 
For linear interpolation we take v = 0 (Scheme I), for the quadratic case v = l/2 
(Scheme II). Thus we have the schemes of first or second order accuracy for all 
variables. Note that in the one-dimensional case (B = 0) and with linear inter- 
polation the scheme represented by Eq. (5) coincides with the method proposed by 
Courant, Isaacson, and Rees [12]. 

The main properties of the above schemes (stability, monotonic behavior, 
magnification of possible errors, etc.) as related to convergence, were studied 
analytically [5] by means of linear model equation and verified in practice by a 
series of problems of gas dynamics. For the case of the equation of gas dynamics, 
the difference scheme is given in [5]. 

By means of the nonsteady characteristic network method described 
above, A. S. Kholodov carried out detailed investigation of the properties of 
three-dimensional supersonic flow around bodies of different shape. Calculations 
were made by a single algorithm throughout the whole region of disturbance 
without separating out any singularities beforehand. Bodies of complex form were 
considered (segements with sharp comers, inverted cones, etc.) in the presence of 
chemical reactions in the gas and angles of attack up to LX = 25-30”. 

Some remarks should be made about the formulation of the problem. The 
solution is given in the region ABCD (Fig. 8) bounded by the initially unknown 
shock wave AB, by the axis of symmetry of the flow AD, by the body CD, and 
by some ray BC. The boundary conditions are: on the shock wave the Rankine- 
Hugoniot relations, on AD-the condition of symmetry of the flow, on the 
body-the conditions of nonpenetration. 

If the ray BC is completely situated in the supersonic region of the flow, the 
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parameters on it are calculated as within ABCD (the Mach cone is situated within 
the region). As initial data the shock wave surface was given (paraboloid, for 
example), also a linear distribution of velocity on the body and a linear distribution 
of parameters between the body and the wave was used. 

The region ABCD was covered with a uniform network at the nodes of which 
the parameters were calculated on layers t = const until a stationary pattern 
of flow was attained. For calculating axisymmetrical flows a network was used 
consisting of 21 points on the body and 11 points across the shock layer (some 
cases were calculated by means of a 41 x 21 network). The data at angle of 
attack were obtained essentially by a 11 x 6 x 11 network (6 points across the 
shock layer with quadratic interpolation.) 

In Fig. 8 the flow pattern (Fig. 8a) and surface pressure distribution for super- 
sonic flow of a sphere-cone body at a zero angle of attack and at various Mach 
numbers in the undisturbed air stream (a = 1.4) are given. In Fig. 8a the 
geometry of the body, the position of detached shock waves and sonic lines with 
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Mach numbers from A4, = 2 to h4, = 23.5 are represented. In the case M, = 16.4 
(height h = 30 km) and A4, = 23.5; (h = 60 km) chemical reactions were taken 
into account. In Fig. 8b for the same Mach numbers the pressure distribution 
along the body, expressed as a ratio to the stagnation pressure (solid lines, 
M, = 2, 5, 20; ZE = 1.4 = const, dotted lines-chemical transformations 
included) is given. It is seen that if a! = const all curves coincide. In the presence 
of chemical reactions (when the effective a! decreases) the profile of the pressure 
distribution becomes more “complete” with increasing Mm . 

In Fig. 9 some results for the same body moving at an angle of attack 
ar = lo”, 20”, 25” for Mach number M, = 6 are given. The case when M, = 23.5 
(h = 60 km), OL = 25” is also considered with account taken of equilibrium 
chemical reactions. In Fig. 9a the position of the detached shock waves, the 
sonic lines and the stagnation points (constructed from the velocity distribution) 
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in the plane of symmetry of the flow are given. For these flow conditions there is 
also given the distribution of pressure (in terms of the maximum pressure) on the 
surface of the body along the nose part 9” = 0, v (Fig. 9b) and in the plane of 
symmetry p = 0 (Fig. 9c). In the latter case sharp nomnonotonic behavior at 
large angles of attack is observed. We note that the point on the body where the 
pressure is maximum does not coincide with the stagnation point, determined 
from the velocity distribution. 

The approach of parameters to a steady state is shown in Fig. 8. The establish- 
ment of steady state pressure (Fig. 8c) for the flow with chemical reactions past a 
sphere for M, = 8, h = 30 km is given (at points A, B, C, 0). Figure 8d shows 
the establishment of the shock wave at points A and B. It is seen that the number 
of time steps necessary for the attaimnent of steady state is of the order of 300-400. 

By means of a characteristic network method complex calculations of long 
bodies of complicated configuration were also made. Figure 10 shows the flow 
pattern around a cylinder with a spherical nose and conical afterbody for M, = 6, 
OL = lo”, where we can see explicitly the zone of interaction of the internal shock 
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with the main one. Also the profiles of pressure (in the plane q = 0) across the 
shock layer in ditferent sections z = const are given. The internal shock is seen 
to be “smeared” over 2-3 steps with respect to A, (h, = 0.05) though in Fig. 10 
it is conventionally plotted as a line. The coordinate h = (7 - T~)/(T~ - T&, 
where T = T,,(z, v) and T  = ~~(2, v) are the equations of the body and nose shock 
wave, respectively. 

5. Secondary Shocks in the Flow 

Under some conditions of supersonic flow around blunt bodies (cones, wedges, 
etc.), in the flow field behind the detached shock wave, secondary “floating” 
shocks occur (n.s.f.) which greatly affect the aerodynamic characteristics of the 
vehicles. Such phenomena were first discovered by means of calculations [3] and 
confirmed afterwards as a result of experiments. The origin of formation of 
“floating” shocks in the flow, the conditions under which they occur (configuration 
of the bodies, conditions of flight, etc.) and also properties of such flows are at 
present insufficiently studied. 

Here we shall give some results of calculations related to the formation of 
“floating” shocks in the flow. Calculations were carried out by the above methods 
for an ideal gas for smooth blunt bodies as well as for bodies with sonic and 
supersonic corners on the contour. 

Let us dwell on the properties of flow which result in the formation of 
“floating” shocks in the flow. When flowing around blunt cones or wedges, a 
sudden stagnation of the flow occurs when changing from the blunt to the rectilinear 
part of the contour. This induces a convergence of characteristics and the formation 
of compressions emanating from the surface of the body behind the junction 
point of the contours. In those cases when the gradient of pressure behind the 
characteristic, bounding the region of influence of the blunt body is large, and the 
shock layer is sufficiently wide, the compressions develop into a shock wave 
situation within the flow having zero intensity at the initial moment. 

All the cases of “spontaneous” generation of shock waves are related to the 
phenomenon of intersection of the characteristics of the same family. In such 
flows where there occurs a whole region which is covered twice by the characteristics 
of one family, a new shock wave emanates from the cusp A of the envelope of these 
characteristics. The cusp itself does not initially develop a discontinuity, however 
the derivatives of velocity, density, pressure, etc. become infinite there, and for 
this reason the intensity of the “floating” shock in the flow is equal to zero and 
later a “real” shock wave appears. 

In practice we have no need to define exactly the position of the node point in 
the formation of a “floating” shock in the flow from zero intensity. The shock 
wave originates from the point at which characteristics of the same family, as 
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calculated, will cross. We note that “floating” shocks in the flow, due to their 
comparatively weak intensity, may be accurately constructed only by means of 
the direct scheme of the method of characteristics. 

M, = 100, Jr = 1.4 

* 4 x 

0 5 15 x 0 5 20 20 x 

4 b” 4 
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In Fig. 11 examples are given of calculations of flow taken from paper [lo] 
at M, = 100; a3 = 1.4 for flow past frustrums of cones (semiangle w1 = 20”-- 
Fig. lla; o1 = loo--Fig. llb; q = O-Fig. llc) with a common conical head 
section (wg = 54.5”). The broken line ACB is the generator of the body of revo- 
lution; AD is the shock wave and BD the characteristic of the second family 
on which the intersection of characteristics of the first family occurs. The region 
of intersection of characteristics (if any) is indicated by a circle with letter H. 
In Fig. 1 lc the line CH is the last characteristic of the fan originating at the point C. 
In Fig. 1 la and Fig. 1 lb the pressure on sharp cones with semiangles 20” and IO“, 
respectively, and for the same M, are plotted by chain-dotted lines. Linear dimen- 
sions are expressed in terms of the radius at the junction point of the cones. 
The pressure is given as a ratio to the stagnation pressure. 

As is seen from the graphs, in the third case the “floating” shock originates 
inside the flow field, in the second case it develops immediately behind the nose 
shock wave; on the other hand, in the first example the “floating” shock does not 
occur at all in the shock layer. In addition, it should be noted that the pressure 
gradient at the junction point increases as the semiangle of the frustrum of the 
cone decreases, and the shock layer becomes relatively thicker. 

The calculations were confined to an ideal gas. Initial conditions for the method 
of characteristics were obtained from the exact solution for the sharp cone, which 
provided high accuracy for the calculations. These examples show that properties 
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of the flow depending on viscosity (i.e., the separation of the boundary layer) 
are not responsible for the phenomenon of formation of a “floating” shock in 
the flow. The fact of their appearance is not co~ected with using “rough” initial 
data in the numerical solution of the supersonic region by the method of 
characteristics. Thus, the conditions of flow of blunt cones and wedges, leading 
to the formation of a positive pressure gradient behind the junction point of the 
contours, and the rather wide shock layer cause the formation of the “floating” 
shock in flow. Its position is defined by the intersection of two neighboring 
characteristics of the same (the first) family. Let us illustrate this by different 
examples. 

Figure 12 gives shock waves and the distribution of pressure along the body for 
plane (V = 0) and axisymmetric (V = 1) bodies of a particular form (blunt spherical 
segment, discontinuity of slope, x = 68”, w  = 0). Fig. 13 gives the pressure 
profile along smooth spherical cones (solid line) and wedges (dotted line) for 
different cone angles [3]. 

It follows that, other conditions being equal (free stream conditions, shape of 
the contour, etc.), the plane blunt body, in comparison with the axisymmetric 
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body (or the body with sonic discontinuity in comparison with the smooth body) 
introduces a larger disturbance into the supersonic flow. For this reason the shock 
layer here is thicker. In addition, for blunt slabs w  = 0 and wedges w  # 0 (plane 
flows) as well as for bodies with a sonic discontinuity (Fig. 14) a zone of over- 
expansion is formed immediately beyond the blunt section. At the point of junction 
of the blunt section with the rectilinear section a positive pressure gradient occurs 
in all cases, and thus sharply increases with increase of w. 

Hence, other conditions being equal, conditions for the development of 
“floating” shocks are more favorable in the plane case or for bodies with a sonic 
discontinuity. 

In Fig. 15 nose shock waves and a “floating” shock in the flow are drawn. 
They arise in the supersonic zone in the flow around cones with blunt segments 
and a sonic discontinuity (x = 30”; B = 1.4) [2]. Cones with different semiangles 
(W = -5”, o”, 10’) and Mach number of oncoming flow i%f, = 4 (solid line) 
and M, = 6 (dotted line) are considered. The intensity of the “floating” shock 
at first rapidly increases, and then gradually decreases with distance from the 
blunt section. In some cases the maximum deflection angle of the flow on passing 
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through the “floating” shock reaches several degrees, but at the distance of 
3040 radii of the blunt section the angle of rotation of the flow reaches only 
several seconds. V. F. Ivanov is the hrst who made a table of position of “floating” 
shocks [2]. We note that in the above cases, in the presence of “floating” shocks, 
the forms and positions of nose shock waves (in the region before the intersection 
with the “floating” shock) coincide (at the same values of Mach numbers of on- 
coming flow) for different semi-cone angles, - 10” < w  < 10” (Fig. 16). The above 
property is apparently explained by the considerable region of influence of the 
blunt section, which for such conditions of flow, extends over a comparatively 
large region of the nose shock wave. 

Figure 17 illustrates the influence of the point of discontinuity on the position 
of the limiting characteristics. An analogous phenomenon concerning the region 
of influence is observed for smooth blunt cones. 

Figure 18 shows the coordinates of the shock wave for smooth cones with blunt 
noses. The coordinates point B at different w  are plotted where the characteristic 
limiting the region of influence of the blunt body occurs. 

FIGURE 17 
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Figure 19 gives examples of flow obtained by V. J. Kosarev with “floating” 
shocks for flow around an axisymmetric body at OL = 0 and 5” (a! = 1.4; M, = 6) 
involving isentropic compression of the flow (smoothly joined cones: nose cone 
w,, = 10” and tail cone w1 = 20”). In the figure is given the flow pattern (the 
“floating” shock in the flow is marked by a chain-dotted line) and the distribution 
of pressure along the surface of the body in the planes q~ = 0, 1~12, ‘IT. In the 
presence of a rather wide shock layer and a positive gradient of pressure, the 
formation of a “floating” shock in the flow (CY = 0”; 01 = S’, for 4 = 0, m/2) is 
explicitly seen. 

The results of analytical investigations of the problems of the formation 
of a “floating” shock in the flow will now be given. The existence of such shocks 
in the flow in the case of the plane slab with a wedge head was proved first by 
A. A. Nikolski under the assumption of constant entropy. E. G. Shifrin [ll] 
considered the conditions of formation of secondary waves for plane rotational 
flows. Let us dwell on the results of this work. 
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We succeeded in suggesting some reasons for the formation of “secondary” 
shocks for flow around a convex profile with a detached shock wave. We supposed 
that such a profile exists when the flow behind the shock wave is continuous and 
in the minimum region of influence, and when the entropy is a monotonically 
decreasing function of the stream function (shock is convex). The condition of 
breakdown of continuous supersonic flow in the characteristic triangle ABC 
determined by the prolile and the adjoining minimum region of influence (Fig. 20) 

FIOURB 20 

was found, namely: “If we subject the profile to continuous deformation, replacing 
part of its contour (downstream from some point h’) by the tangent to the profile 
at this point, and then move it upstream, then the point E hardly manages to reach 
the minimum region of influence as continuous supersonic flow in the maximum 
characteristic triangle adjacent to the minimum region of inlluence is destroyed.” 

It is shown that, if in the flow past an Snite blunt wedge with a detached shock 
wave, we gradually increase the angle of the opening, while keeping the flow behind 
the shock wave at infinity supersonic at all times, either a shock or a local subsonic 
zone of isentropically stagnated gas will occur in the flow (Fig. 20). An analogous 
result is found in the flow around a profile with a discontinuity of contour slope, 
the point of origin of the sonic hue. 
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